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Abstract

We show that string graphs can be recognized in nondeterministic exponential time by giving an
exponential upper bound on the number of intersections for a minimal drawing realizing a string graph in
the plane. This upper bound confirms a conjecture by Kratochvı́l and Matoušek (J. Combin. Theory. Ser. B
53 (1991).) and settles the long-standing open problem of the decidability of string graph recognition (Bell
System Tech. J. 45 (1996) 1639; Open Problem at Fifth Hungarian Collogium on Combinatories, 1976).
Finally we show how to apply the result to solve another old open problem: deciding the existence of Euler
diagrams, a fundamental problem of topological inference (Proceedings of the 14th International Joint
Conference on Artificial Intelligence, 1995, p. 901). The general theory of Euler diagrams turns out to be as
hard as second-order arithmetic.

1. Introduction

Is it possible that some A is B; some B is C; but no A is C? Easily, you say, and your mind
conjures up a diagram that Euler (and Leibniz, and Sturm before him) would have used to
illustrate this situation (see Fig. 1).
However, it is not always possible to illustrate a situation that is logically consistent by a Euler

diagram in the plane: we can turn the complete graph on five vertices into an example with 15
regions, one for each vertex and edge, that cannot be drawn in the plane [Sin66]. Given a set of
specifications, can we effectively determine whether there is a Euler diagram or not?

$An earlier version of this paper appeared as DePaul Technical Report TR00-005, September 2000.
�Corresponding author.

E-mail addresses: mschaefer@cs.depaul.edu (M. Schaefer), stefanko@cs.uchicago.edu (D. S̆tefankovic̆).



Diagrammatic reasoning is concerned with the representability of logical relations in the plane
and other spaces. This area has drawn attention from different research groups including Artificial
Intelligence and Geometrical Information Systems [All83,GPP95], Spatial Databases [PSV99],
Integrated Circuits [Sin66], and Logic [GPP95,LP97]. One of the major open problems in this area
is the decidability of the existence of a representation for a given, logically consistent, formula.
Even the special case illustrated in Fig. 1 in which we specify for a collection of regions whether
they should intersect or not has been open since the 1960s.
This case is captured by the combinatorial notion of string graphs. String graphs are

intersection graphs of curves in the plane with a vertex for each curve, and an edge representing an
intersection between two curves. The notion of string graphs was hinted at in a 1959 paper by
Benzer [Ben59] on genetic structures, and isolated in 1966 by Sinden [Sin66] who stated the main
problem thus:

It is specified which pairs of a collection of curves (or connected regions) in the plane cross and
which pairs do not cross. When are such specifications consistent?

Sinden was working on the layout problem of integrated circuits (thin film RC circuits to be
precise), and the string graph problem arose naturally in this context, since the technology for
creating the circuits made it possible for some pairs of conductors to cross. On the theoretical side
he observed that all planar graphs are string graphs, and also gave the example described earlier of
a graph which is not a string graph.
Ron Graham, in 1976, introduced the problem to the combinatorial community [Gra76], and in

the same year Ehrlich et al. [EET76] showed that computing the chromatic number of string
graphs is NP-hard.
Several special cases of the string graph problem were found to be effectively solvable. Benzer’s

paper, for example, suggested the notion of interval graphs, that is, intersection graphs of
subintervals of the real line. Interval graphs, as well as circular-arc graphs, and series-parallel
string graphs were shown to be recognizable in polynomial time [McC01,MNT88], but the general
recognition problem remained open. It was not even known whether the problem is decidable. In
1991 Kratochvı́l [Kra91b] proved that recognizing string graphs is NP-hard, showing that a
characterization cannot be polynomial time computable (unless P ¼ NP). At the same time
Kratochvı́l and Matoušek [KM91] proved the surprising result that some string graphs require an
exponential number of intersections to be realized in the plane. They conjectured an exponential
upper bound on the number of intersections.
In this paper we show that this conjecture is indeed true, placing the recognition problem of

string graphs in NEXP. János Pach and Géza Tóth independently obtained a proof of the
decidability of the string graph recognition problem by showing that certain configurations of
cells do not occur in a minimal realization [PT01].
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Fig. 1. Some A is B; some B is C; but no A is C:



Because the exponential upper bound on intersections is matched by an exponential lower
bound, we cannot hope to improve the complexity analysis by a sharper upper bound. However, it
turns out that although there can be an exponential number of intersections, these intersections
are very structured and allow a compressed representation of polynomial size. Using recent results
on the solvability of word equations Schaefer et al. build on the results of the present paper to
show that string graphs can be recognized in NP [SSS01] which is a tight result, since the problem
is known to be NP-hard [Kra91b].
As one of the motiviations of the study of string graphs we mentioned the realizability Euler

diagrams. In Euler diagrams we distinguish only two possible relations between regions: they
intersect, or they do not intersect. Topological inference allows a much more refined set of
predicates to specify the mutual relation of any pair of regions giving us the very expressive
topological expressions. In Section 4 we show that the realizability of topological expressions can
be reduced to the string graph problem, and is therefore in NP as well (using the result from
[SSS01] that string graph recognition is in NP).
In Section 5 we look at the complexity of the theory of diagrams, in which we allow quantified

expressions. Euler diagrams are the special case in which we only consider existential expressions.
The theory is undecidable, as a matter of fact, it is as hard to decide as truth in second-order
arithmetic.

2. Preliminaries

A homeomorphism is a bijective continuous mapping whose inverse is also continuous. A curve,
or string, is a set homeomorphic to ½0; 1� which implies that strings, or curves, do not self-intersect
and are compact. Given a collection of curves ðCiÞiAI in the plane, the corresponding intersection

graph is ðI ; ffi; jg : Ci and Cj intersectgÞ: The size of a collection of curves is the number of

intersection points. We assume that no three curves intersect in the same point. A graph
isomorphic to the intersection graph of a collection of curves in the plane is called a string graph.
Let csðGÞ be the size of a smallest (in the sense of size defined above) set of curves whose
intersection graph is isomorphic to G; and define csðmÞ ¼ maxfcsðGÞ : G has m edgesg:1 It is not
immediately obvious that csðGÞ is a finite number if G is a string graph. Conceivably, an infinite
number of intersections might be required to realize a string graph. As was observed earlier by
Kratochvı́l et al. [KGK86], this is not the case: we can assume that the curves intersect only
finitely often. For completeness we include a proof of this result.

Lemma 2.1 (Kratochvı́l et al. [KGK86]). A string graph can be realized by a family of polygonal
arcs with a finite number of intersections.

Proof. Assume we have a string graph realized by a family of curves ðCiÞiAI : Let C ¼ ,iAI Ci:
Note that C is a compact set. For a point p in C; and an open neighborhood O of p in the plane we
say that O respects the family of curves, if O only intersects curves that contain p: Every point has

1The functions defined in this section are based on similar functions in the papers by Kratochvı́l and Matoušek

[KM91,Kra98].



at least one such neighborhood (in fact infinitely many), since all curves are compact. (If a
compact set intersects all open neighborhoods of a point, it has to contain that point.) Let O be
the collection of all O such that O is an open neighborhood of a point pAC such that O respects
ðCiÞiAI : Then O is an open cover of C; and, by the Heine–Borel Theorem (which we can apply

since C is compact), it contains a finite cover O0 of C: Therefore, each curve Ci is contained in a

finite collection O0
iDO0 of open sets none of whom contain any points of curves Cj that Ci does not

intersect. Hence we can replace Ci with a simple polygonal arc Pi in O0
i; while guaranteeing that Pi

intersects Pj if Ci and Cj intersect. The later is possible since there must be a set OAO0 which
contains a common intersection point of Ci and Cj: &

Given a graph G ¼ ðV ;EÞ and a set RDðE
2
Þ ¼ ffe; f g : e; fAEg on E; we call a drawing D of G

in the plane a weak realization of ðG;RÞ if only pairs of edges which are in R are allowed to
intersect in D: We call ðG;RÞ weakly realizable if it has a weak realization. Note that in a weak
realization the pairs of edges specified in R do not have to intersect. We say that D is a realization

of G; and call G realizable, if exactly the pairs of edges in R intersect in D:2 Let us define cwðG;RÞ
as the smallest number of intersections in a weak realization of ðG;RÞ; cwðGÞ ¼ maxfcwðG;RÞ :
ðG;RÞ has a weak realizationg; and cwðmÞ ¼ maxfcwðGÞ : G has m edgesg: Similarly define

crðG;RÞ; crðGÞ; and crðmÞ for realizations. The quantity crðGÞ ¼ cwðG; ðE
2
ÞÞ is known as the

crossing number of the graph G; and was shown to have an NP-complete decision problem by

Garey and Johnson in the early 1980s [GJ83]. The other extreme case, cwðG; |Þ; is equivalent to
planarity testing, and therefore in P.
The following relationships between the functions we defined are well known:

(i) cwðmÞpcrðmÞ;
(ii) crðmÞp4csðm2 þ 4mÞ; and
(iii) csðmÞp4cwð2mÞ þ 2m:

The first inequality follows from cwðG;RÞpmaxfcrðG;R0Þ : R0DR; and ðG;RÞ has a
realizationg: Kratochvı́l gave a reduction of realizability to string graphs [Kra91b, Proposition
1]: suppose we are given ðG;RÞ where G ¼ ðV ;EÞ: Let V 0 ¼ V,E,fðu; eÞ : uAeAEg; and E0 ¼
R,ffu; ðu; eÞg; uAeAEg,ffe; ðu; eÞg; uAeAEg: Then ðG;RÞ is realizable, if and only if G0 ¼
ðV 0;E0Þ is a string graph. This reduction implies the second inequality. Finally, the string graph
problem can be reduced in polynomial time to the weak realizability problem [MNT88,Kra91b]
as follows. Given a graph G ¼ ðV ;EÞ; let G0 ¼ ðV,E; ffu; eg : uAeAEgÞ; and R ¼
fffu; eg; fv; f gg : fu; vgAEg: Then G is a string graph if and only if ðG0;RÞ is weakly realizable.
This reduction implies the third inequality.
Kratochvı́l and Matoušek [KM91] showed that cwðmÞX2cm for some positive constant c: Our

main result shows that cwðmÞpm2m (Kratochvı́l and Matoušek conjectured an upper bound of

2mk

). This implies the decidability of string graphs, which was a long-standing open problem in the
field.

2Kratochvı́l [Kra98,Kra91a,Kra91b] calls ðG;RÞ an abstract topological graph, and uses the word feasible for weakly

realizable.



3. Bounding the Number of Intersections

If we assign each curve in a collection of curves a unique number, we can look at the
intersections of the curves along a particular curve as a word over an alphabet (here we use the
fact that the number of intersections is finite).
The basic idea behind the exponential upper bound is to show that if such a word is too long, it

contains a substructure which can be redrawn using a smaller number of intersections. This allows
us to bound the number of intersections along every curve in a drawing of smallest size, thereby
bounding the size of the whole drawing.

Lemma 3.1. Every word of length X2n over an alphabet of size n contains a non-trivial subword in
which every character occurs an even number of times.

Proof. Let S ¼ f1;y; ng; and wAS�; jwjX2n: To every iAf0;y; 2ng assign a vector vi in Zn
2

whose jth coordinate is the parity of the number of occurrences of the symbol j in the prefix of w

of length i: (In particular, v0 is the all-zero vector.) Since there are 2n þ 1 indices, but only 2n

vectors in Zn
2; there are 0piojp2n such that vi ¼ vj: The non-trivial subword of w starting in

position i þ 1 and ending in position j fulfills the conditions of the lemma. &

Theorem 3.2. Let G be a graph with m edges, RDðE
2Þ such that ðG;RÞ is weakly realizable, and let D

be a weak realization of ðG;RÞ with the minimal number of intersections. Then for any edge eAG
there are less than 2m intersections on the curve realizing e in D:

Proof. Suppose not. Let D be a weak realization of ðG;RÞ with the minimal number of
intersections and let e be an edge of G which has more than 2m � 1 intersections in D: Lemma 2.1
tells us that the number of intersections in the realization is finite. By Lemma 3.1 we can choose a
non-trivial segment of this edge which is intersected an even number of times by any other edge.
Draw a window around this segment containing no other intersections of D: This is possible, since
the number of intersections in the drawing D is finite. Let 2nf ðnf ANÞ be the number of

intersections of edge f with e in that window. For each edge f assign numbers 1; 2;y; 4nf to

intersections with the window in the order they appear on f (choose an arbitrary orientation of f ).
For an example see Fig. 2.
We can assume (by an application of the Jordan–Schoenflies theorem [MT01]) that the window

is a circle, that e within the window is a straight line passing through the center, and that for every
f intersections 2i � 1 and 2i are mirror images of each other (with e as the mirror), iAf1;y; 2nf g:
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Fig. 2. Segment of e with surrounding window.



(The intersections with e are the only intersections of D within the window, since this is how we
chose the window.)
Remove everything inside of the window with the exception of e: For each edge f there is a

connection between intersection 4i � 2 and 4i � 1 lying completely outside the window,
iAf1;y; nf g: Use circular inversion along the circle to bring all of these connections inside the

window. Now mirror everything inside the window along e:
This yields for every edge f a connection between 4i � 3 and 4i; iAf1;y; nf g; inside the

window. We can now build a new version of f : start at intersection 1 (which is connected to one of
the endpoints of f ), and continue to 4 (inside the window), from 4 to 5 (outside the window), 5 to
8 (inside the window), and so on up to 4nf which is the last intersection of f with the window

before it terminates at its other endpoint. Hence this new version of f still connects its two original
endpoints (here we needed that f intersects e an even number of times).
Note that we have reduced the number of intersections of f with the window from 4nf to 2nf :

Every intersection between curves inside the circle corresponds to an intersection outside and
hence this new realization respects R: We might have lost intersections between curves, but this is
acceptable, since we only require D to be a weak realization.
The number of intersections along e might have increased, since a connection from outside the

window brought inside by circular inversion might intersect e arbitrarily often. However, we do
know that, overall, we halved the number of intersections between the intersections and the
boundary of the window. We can therefore move the part of e inside the circle to coincide with
one of the two arcs into which e separates the boundary of the window. We choose the arc which
results in the smaller number of intersections with e: Since each edge f causes at most 2nf

intersections with the window, this means that the number of intersections on e within the area of
the window has been halved, and hence the total number of intersections of the drawing has been
decreased, contradicting the assumption that D was of minimal size. &

Corollary 3.3. String graph recognition is in NEXP.

Proof. Theorem 3.2, and the fact that csðmÞp4cwð2mÞ þ 2m (see the preliminaries) shows

that if G is a string graph, there is a collection of curves of size M ¼ 2OðmÞ whose intersection
graph is isomorphic to G: We can consider the drawing of the collection of curves as a planar
graph (each intersection point becoming a vertex) with at most M vertices. By a result of Schnyder
[Sch90], and de Fraysseix et al. [dFPP90] there is a drawing of this graph on an M  M grid.
Hence in NEXP we can guess a graph on such a grid and verify whether its intersection graph is
isomorphic to G: &

The same argument shows that we can decide the (weak) realizability of a topological graph
ðG;RÞ in NEXP.

4. Topological Inference

We mentioned earlier that settling the problem of recognizing string graphs solves an old open
problem from topological inference about regions in the plane [CGP98,Sin66]. A region is a subset



of the plane homeomorphic to the closed unit disc. Let @A denote the boundary of the region A: If
we specify for a collection of regions ðAiÞiAI which pairs may intersect and which may not, the

question is whether we can draw these regions to meet the specification? Since the existence of
such a drawing is not affected if we change the universe of discourse from regions to curves, the
problem is equivalent to the string graph problem, and therefore solvable in NEXP.3

Topological inference works over a larger set of predicates than overlap and disjoint. Egenhofer
determined all eight possible relationships of two simply connected regions based on whether the
intersection of their interior, boundary and exterior is empty or not [Ege91]. The relations are
disjoint, equal, inside, contains, cover, covered, meet, and overlap. See Fig. 3 for definitions. For
two simply connected regions A and B exactly one of these predicates will be true.
We call a Boolean combination of the topological predicates a topological expression. A

topological expression is explicit, if it specifies the relationship between any pair of variables,
meaning it is of the form

V
A;BAI PA;BðA;BÞ; where I is the set of variables, and PA;B is one of the

eight basic predicates (for each A;BAI). We can always assume that the expression does not
contain the predicates contains or cover, because we can substitute them by inside and covered.
Quantifying topological expressions we obtain topological formulas. Determining the truth of
these (where the universe is the set of all regions in the plane) is the goal of topological inference

[GPP95]. Of main interest are the purely existential formulas, since they express the existence of
diagrammatic representations of logical relationships (Euler diagrams). In this case we also speak
of the realizability of a topological expression.
In some special cases the realizability of a topological expressions is known to be in P. Planar

map graphs were introduced in [CGP98]. A k-planar map graph is the intersection graph of a set of
regions with disjoint interiors such that at most k regions meet in a point. Planar graphs are
exactly the 3-planar map graphs. A graph is called a planar map graph if it is a k-planar map graph
for some k: The problem of recognizing planar map graphs is equivalent to the realizability of
explicit topological expressions containing only relations meet and disjoint. In [CGP98] a
polynomial time algorithm for recognizing 4-planar map graphs was given. Thorup [Tho98] found
a polynomial time algorithm for recognizing planar map graphs in general. Other special cases of
the problem have been classified [GPP95,FH02], but the complexity of the general realizability
problem of topological expressions has remained open.
In this section we will show how the decidability of the existential theory of topological

expressions follows from the decidability of string graphs. More precisely we show that the
realizability of topological expressions can be decided in NEXP. The next section complements
this result by showing that the general theory is undecidable.
Talking about a realization of meetðA;BÞ; or coveredðA;BÞ we call any point belonging to

@A-@B a contact point of A and B: In the other cases points belonging to the intersection of @A
and @B we simply call intersection points.
The Hausdorff distance distðA;BÞ of two regions is defined as

distðA;BÞ ¼ maxfsup
xAA

inf
yAB

dðx; yÞ; sup
yAB

inf
xAA

dðx; yÞg;

3Because regions are homeomorphic to the unit disc, they are simply connected. The topological inference problem

changes dramatically if we only require regions to be connected. As Kratochvı́l [Kra91a, Section 2] points out, in that

case any specification can be realized.



where dðx; yÞ is the Euclidean distance of two points in the plane. The Hausdorff distance is a
metric for regions, i.e. it is symmetric, satisfies the triangle inequality and distðA;BÞ ¼ 0 iff A ¼ B:
We let

dðA;BÞ ¼ inf
xAA

inf
yAB

dðx; yÞ:

Note that for closed, non-empty sets dðA;BÞ40 iff A-B ¼ |: For arbitrary sets d is not a metric.
We will now show how to redraw a realization of an explicit topological expression to bound

the number of contact points in the drawing. Note that for any explicit expression there is always
an equivalent explicit expression not containing equal.

Lemma 4.1. Let j be an explicit topological expression not containing equal. If there is a drawing

realizing j; then there is a drawing realizing j in which the number of contact points on each
boundary is bounded by the square of the number of variables in j:

Proof. Fix a drawing of j: Let A1;y;AjI j be the family of variables occurring in j: We can

assume that the variables are sorted such that for ipj there is no coveredðAi;AjÞ in j: If such an

ordering does not exist, then j has no realization (since coveredðAi;AjÞ means that Ai is properly

contained in Aj). For each meetðA;BÞ and coveredðA;BÞ in j we choose a witness point

pA;BA@A-@B: Let

e1 ¼ min
i;jAI

fdð@Ai; @AjÞ : j contains disjointðAi;AjÞ or insideðAi;AjÞg

e2 ¼ min
i;jAI

fdistðAi-@Aj; @AiÞ : j contains overlapðAi;AjÞg

Note that e140; since boundaries are closed and disjoint. Also e240; since there is a point in
Ai-@Aj which is inside Ai: Let e ¼ minfe1; e2g=2: If B is a region with distðB;AiÞpe then

insideðAi;AjÞ ) insideðB;AjÞ insideðAj;AiÞ ) insideðAj;BÞ
disjointðAi;AjÞ ) disjointðB;AjÞ overlapðAi;AjÞ ) overlapðB;AjÞ ð1Þ

Fig. 3. The eight relationships between regions (Egenhofer).



This means changing the regions slightly (up to a Hausdorff distance of e) does not change the
relationships inside, disjoint, and overlap. Unfortunately the same is not true for meet and
covered. We will redraw the regions one by one, removing unnecessary contact points while
preserving the meet and covered relationships.
Suppose then that for A1;y;Ai�1 the only contact points on their boundaries are witness

points. We will show how to redraw Ai to make this true for A1;y;Ai while preserving the
condition that A1;y;AjI j realize j:
Let c : D/Ai be the homeomorphism of the closed unit disc to Ai:Using the Jordan–Schoenflies

theorem [MT01] we extend c to a homeomorphism of the whole plane to itself which we call c
again. Since c is uniformly continuous (if we consider it as being defined on the compactification of
the plane), there exists Z such that if ð1� ZÞDDEDD then distðcðEÞ;AiÞoe: Let F be the union of

c�1ðAjÞ for which coveredðAi;AjÞ occurs in j: By the way we ordered the variables this can only

happen for joi: Since we assumed that A1;y;Ai�1 only contain witness points as contact points
on their boundary, we conclude that F-@D contains only witness points. Choose E such that
F,ð1� ZÞDDEDD and E-@D ¼ fpAi;Ak

: kAIg; that is E intersects @D exactly in the witness

points and covers F : Replace Ai by cðEÞ: By the implications in (1) all inside, disjoints and
overlaps are preserved. Because E contains all witness points for region Ai; all covered and meet
relations are satisfied after this step, and only the witness points are contact points of Ai: Since
contact points of Aj; joi did not change, this conditions remain true after redrawing all regions.

Finally note that we used a quadratic number of contact points (potentially one for each pair of
variables). &

Before we prove the decidability result for topological inference we need to introduce a refined

variant of realizability. Let ðG;R;SÞ be such that R;SD E
2

� �
; and R-S ¼ |: We call ðG;R;SÞ

realizable if G can be drawn in the plane, such that only the pairs of edges in R,S intersect, and
all the pairs of edges in S do intersect. It is easy to see that this variant can also be decided in
NEXP, since the same exponential upper bounds on the intersection number applies.

Theorem 4.2. The realizability of a topological expression can be decided in NEXP.

Theorem 4.2 follows from the following lemma which allows us (in NP) to translate the
realizability of a topological expression to the realizability of some ðG;R;SÞ: Since that problem
can be solved in NEXP, the realizability of topological expressions can be decided in NEXP.

Lemma 4.3. The realizability of a topological expression NP-reduces to the realizability problem of

the form ðG;R;SÞ; that is, for every topological expression j we can in NP compute triples ðG;R;SÞ
such that j is realizable, if and only if one of the ðG;R;SÞ is realizable.

Proof. Given a topological expression j over variables ðAiÞiAI we have to rephrase the problem as

a realizability problem of the form ðG;R;SÞ: We begin by simplifying j:
If the topological expression j can be realized, then there is an explicit topological expression c

which can be realized, and c implies j: In NP we can guess an explicit topological expression c
over the variables ðAiÞiAI ; and verify in polynomial time that c implies j (since c specifies the



relationship between every pair of variables, this verification corresponds to evaluating the truth
of a formula for a given assignment). Hence we can assume that j is an explicit topological
expression to begin with. Furthermore, in polynomial time, we remove the relation of equality
from j by renaming variables, and we substitute any occurrence of coverðB;AÞ with
coveredðA;BÞ; and containsðB;AÞ by insideðA;BÞ:
In summary, we can assume that j is an explicit topological expression containing (positive)

occurrences of the relations disjoint, meet, covered, overlap, inside only.
Suppose that a topological graph ðG;R;SÞ satisfies:

(1) There are vertices z; z1; z2; z3 in G connected to each other by edges which may not intersect
any other edges.

(2) For each Ai there is a vertex ci (center) and a circle graph Bi (boundary) with at least three
vertices, and no two edges of Bi may intersect.

(3) Each vertex in Bi is connected to ci; z1; z2; z3; these edges are not allowed to intersect the
boundary Bi; and no edge with endpoint ci may intersect an edge with endpoint z1; z2; or z3:

(4) The boundaries Bi;Bj may share vertices unless disjointðAi;AjÞ; or insideðAi;AjÞ is contained
in j:

(5) If j contains meetðAi;AjÞ or coverðAi;AjÞ then Bi and Bj share at least one common vertex.

(6) Edges of Bi;Bj may intersect only if j contains overlapðAi;AjÞ:
(7) We say that a vertex v is an in-Ri-witness (out-Ri-witness) if it does not belong to Bi and is

adjacent to ci (z1; z2; and z3; resp.) using an edge (edges, resp.) which are not allowed to
intersect Bi: If disjointðAi;AjÞ is in j; then there is an out-Ri-witness on Bj; and an out-Rj-

witness on Bi: If insideðAi;AjÞ then there is an in-Rj-witness on Bi: If meetðAi;AjÞ; then there

is an out-Ri-witness on Bj between any two vertices shared with Bi; and an out-Rj-witness on

Bi between any two vertices shared with Bj: If coveredðAi;AjÞ then there is an in-Ri-witness on

the boundary Bj between any two vertices shared with Bi: If overlapðAi;AjÞ then there is an

in-Ri witness and an out-Ri witness on the boundary Bj; and vice versa.

We claim that if any ðG;R;SÞ fulfilling these conditions has a realization then j can be realized
as an Euler diagram. Consider a realization of ðG;R;SÞ: We can assume that z lies outside the
triangle z1; z2; z3: Hence by ð1Þ all other vertices and edges lie inside the triangle. Because of (3)
vertex ci must lie inside of Bi (z1; z2; and z3 being outside). Let region Ri be the interior of Bi

together with its boundary. By ð7Þ any in-Ri-witness lies inside Ri; and any out-Ri-witness lies in
the exterior of Ri: For insideðAi;AjÞ; and disjointðAi;AjÞ boundaries may not intersect by (4) and
(5) and therefore the in/out-witnesses guarantee the correct relationship between the correspond-
ing regions. For overlapðAi;AjÞ we have in/out-witnesses of overlap. For meetðAi;AjÞ the interior
of Ri cannot intersect Rj; and vice versa because of the out-witnesses; similarly for coveredðAi;AjÞ:
We will next show that if j can be drawn as an Euler diagram then there is a ðG;R;SÞ which

satisfies the conditions above, and whose size is polynomial in jjj: This completes the proof, since
in NP we can guess such a ðG;R;SÞ:
If j is realizable, then we can redraw a graph realizing it using Lemma 4.1 such that the number

of contact points is at most jI j2: Enclose the diagram within a new region Z: On @Z choose three
points z1; z2; z3; choose z outside Z and connect z to z1; z2; z3 with edges outside Z: Choose ci

inside each Ri: Furthermore select at least three vertices on each @Ri; including all contact points,



and connect them to z1; z2; z3 with edges inside Z � Ri and to ci with edges inside Ri (thus (3) is
satisfied). Clearly (4) is satisfied. Since all contact points were chosen on each @Ri both (5) and (6)
are satisfied, because we know that if two edges intersect then they intersect in an intersection
point of their boundaries. Finally we can choose in/out witnesses for disjointðRi;RjÞ;
insideðRi;RjÞ; meetðRi;RjÞ; coveredðRi;RjÞ; and overlapðRi;RjÞ: Note that we chose at most

jI j2 witnesses and at most jI j4 in/out witnesses. Hence ðG;R;SÞ has size polynomial in jjj: &

5. The theory of diagrams

We have shown that the existential theory of diagrams is decidable by reducing it to the existential
theory of strings. In this section we show that the first-order theory of diagrams is undecidable.

Theorem 5.1. The first-order theory of diagrams is D1
o-complete.

D1
o is the oth level of the analytical hierarchy, the level which captures the complexity of deciding

truth in second-order arithmetic (see [Odi89] for details). Our proof proceeds in three steps,
interpreting the first-order theory of strings in the first-order theory of diagrams, interpreting the
first-order theory of diagrams in second-order arithmetic, and finally coding second-order arithmetic
into the first-order theory of strings, showing that all three theories have the same complexity.

Proposition 5.2. The first-order theory of strings can be computably interpreted in the first-order
theory of diagrams. More precisely for every Sk formula about strings we can compute an equivalent
Skþ2 formula about diagrams.

Proof. We model a curve s as a pair of regions ðA;BÞ such that A-B ¼ s: To this end we define
predicates over diagrams, curveðA;BÞAS2 which is true if and only if A-B is a curve, and
intersectððA;BÞ; ðC;DÞÞAS2 which is true if the two curves represented by ðA;BÞ and ðC;DÞ
intersect. Assuming we have these predicates we can easily translate each sentence about curves into
an equivalent sentence about diagrams (see for example the proof of the Reduction Theorem
[Hod93]). We can also arrange the quantifiers in such a way that the translated sentence lies in Skþ2:
For the definition of curve and intersect we make use of a predicate unionðC;A;BÞ which is true

if and only if CDA,B:

unionðC;A;BÞ 3 CDA,B

: 3 ð8DÞ½containsðC;DÞ ) :ðdisjointðD;AÞ4 disjointðD;BÞ�
curveðA;BÞ 3 A-B is a curve

: 3 meetðA;BÞ4
ð(CÞ½coverðC;AÞ4 coverðC;BÞ4 unionðC;A;BÞ�

intersectððA;BÞ; ðC;DÞÞ 3 the curves A-B and C-D intersect

: 3 curveðA;BÞ4 curveðC;DÞ4
ð(E;FÞ½coverðA;EÞ4ðcoverðC;EÞ3 coverðD;EÞÞ4
ðcoverðA;FÞ3 coverðB;FÞÞ4 coverðD;FÞ4 meetðE;FÞ�



In the verification that these predicates model the properties they are supposed to, we need the
compactness of the regions. The predicate curveðA;BÞ expresses that there is a region C which is
the union of the two meeting regions A and B: Since A and B are simply connected and do not
intersect this implies that they meet in a curve. To see that intersectððA;BÞ; ðC;DÞÞ expresses
intersection of two curves note that E and F as in the predicate have to meet in a point that
belongs to all four regions. &

Proposition 5.3. The theory of diagrams can be interpreted in second-order arithmetic.

Proof. We will only sketch the basic ideas needed to interpret diagrams in second-order
arithmetic. A region is homeomorphic to the unit disk, hence it can be described by a countable
set of real numbers dense in it. In second-order arithmetic we can talk about real numbers, and
countable sets of real numbers. With this we can write a basic predicate that tests whether a real
number is contained in the closure of a countable set of real numbers. We can also test whether a
real number is contained within the interior of the closure of a countable set of real numbers, by
asking for all reals in a neighborhood of the real number to be contained in the closure. With these
two basic predicates we can express the eight predicates that express the possible relationships
between regions as predicates over countable sets of reals. &

Proposition 5.4. Second-order arithmetic can be interpreted in the theory of strings.

Proof. We begin by defining several predicates from the basic predicate intersectðx; yÞ: The idea is
to model points in the plane as the unique intersection point of two curves.

aDb 3 a is a subset of b

: 3 ð8xÞ½intersectðx; aÞ ) intersectðx; bÞ�
uniqueða; bÞ 3 a and b have a unique intersection point

: 3 intersectða; bÞ4
ð8xDaÞð8yDbÞ½intersectðx; bÞ4 intersectðy; aÞ ) intersectðx; yÞ�

crossða; b; cÞ 3 a and b have a unique intersection point; and it lies on c

: 3 uniqueða; bÞ4ð8xÞ½xDa4 intersectðx; bÞ ) intersectðx; cÞ�
intptða; b; c; dÞ 3 a and b have a unique intersection point; and it lies on c and d

: 3 crossða; b; cÞ4 crossða; b; dÞ
unionða; b; c; dÞ 3 a ¼ b,c,d and b-d ¼ |

: 3 b; c; dDa4: intersectðb; dÞ4
ð8xÞ½intersectðx; aÞ ) intersectðx; bÞ3 intersectðx; cÞ3 intersectðx; dÞ�

interiorða; bÞ 3 a and b only have interior intersection points

: 3 unionða; a1; a2; a3Þ4 uniqueða1; a2Þ4 uniqueða2; a3Þ4
unionðb; b1; b2; b3Þ4 uniqueðb1; b2Þ4 uniqueðb2; b3Þ4
V

i;jAf1;3g
: intersectðai; bjÞ



finintða; bÞ 3 a-b is a finite set

: 3 ð8x; yÞ½intptðx; y; a; bÞ ) ð(a0DaÞð(b0DbÞ½intptða0; b0; x; yÞ4 interiorða0; b0Þ��
allintonða; b; cÞ 3 a-bDc

: 3 ð8uDaÞ½intersectðu; bÞ ) intersectðu; cÞ�
sameintða; b; cÞ 3 a-b ¼ a-c

: 3 allintonða; b; cÞ4 allintonða; c; bÞ

The compactness of the curves involved is necessary to guarantee the correctness of most of
these definitions. The main predicate is finintða; bÞ which expresses that a and b have finitely many
intersection points only. This is verified by requiring each intersection point to be contained
within an open neighborhood on each curve (the interiors of a0 and b0). Since a and b are compact,
there can only be finitely many such points.
We also need a family of formulas that we will later use to express cardinality. Note

that the length of these formulas depends on k; hence we cannot use them in the definition of
finint.

uniquekða; bÞ 3 ja-bj ¼ k

: 3 ð(a1;y; akDaÞ½
V

1pipk

uniqueðai; bÞ4
V

1piojpk

: intersectðai; ajÞ4

ð8xDaÞ½intersectðx; bÞ ) ½
W

1pipk

intersectðx; aiÞ��

lessða; b; c; dÞ 3 ja-bjojc-djoN ðassuming a-c ¼ |Þ
: 3 ð(xÞ½finintðx; aÞ4 finintðx; cÞ4 sameintða; b;xÞ4 sameintðc; d; xÞ4

ð8uDxÞ½uniqueðu; aÞ ) ð(vÞ½uDvDx4 unique2ðv; cÞ4 uniqueðv; aÞ���

If lessða; b; c; dÞ and a and c are disjoint, then the number of intersection points of a and b is
strictly less than the number of intersection points of c and d (and both are finite). This allows us
to define equipollence.

eqintða; b; c; dÞ 3 ja-bj ¼ jc-djoN ðassuming a-c ¼ |Þ
: 3 : lessða; b; c; dÞ4: lessðc; d; a; bÞ

For the following let us fix the strings U ¼ ½0; 1� and N ¼ fðx;x sinð1=xÞÞg,fð0; 0Þg which will
be used as parameters. Furthermore choose pairwise disjoint sets NiDN such that Ni and U
intersect in exactly i points (for all iAN).
We need to show how to translate unnested atomic statements of second-order arithmetic into

the theory of strings. For each number variable x reserve a string variable sx; we require sxDN:
For set variables X reserve string variables sX : We require allintonðU ; sX ;NÞ: Translate as
follows:

i ¼ x as ð(u; vÞ½finintðu; vÞ4 eqintðNi;U ; u; vÞ4 eqintðu; v; sx;UÞ�
x þ y ¼ z as ð(u; v;w1;w2;w3Þ½finintðu; vÞ4 unionðv;w1;w2;w3Þ4: intersectðw2; uÞ4

eqintðsx;U ; u;w1Þ4 eqintðsy;U ; u;w3Þ4 eqintðsz;U ; u; vÞ
iAX as allintonðNi;U ; sX Þ



These predicates are sufficient to build all of second-order arithmetic. Hence we have shown
that second-order arithmetic can be interpreted in the theory of strings with parameters
U ;N;N1;y: While we cannot define the pair ðU ;NÞ we only need to be able to define a pair of
strings that has exactly oþ 1 intersections. This, however, is easy:

universeðu; vÞ 3 : finintðu; vÞ4ð(xDuÞ½uniqueðx; vÞ4
ð8y : xDyDuÞ½: uniqueðy; vÞ�4ð8yDuÞ½: intersectðy;xÞ ) finintðy; vÞ��

The predicate universeðu; vÞ expresses that u and v intersect infinitely often in oþ 1 many points.
The accumulation point is the unique point in which x and v intersect. Every neighborhood of this
point contains intersection points of u and v: Furthermore, there are no other accumulation points
since all subcurves of u disjoint from x only have finitely many intersections with v: Curves u and v

such as these can serve instead of the particular sets U and N used above, hence we can simply
require that universeðU ;NÞ:
We then define Ni to be the smallest substring of v that has i intersections with u; is disjoint from

N0;y;Ni�1; and such that there are no intersection points of u and v between Ni�1 and Ni: &

6. Concluding remarks

While it is satisfying to know that string graphs can be effectively, if not efficiently, recognized,
the gap between NP and NEXP is large, and a more precise classification is called for. As we
mentioned earlier, the problem is settled in a paper by Schaefer et al. which shows that string
graphs can be recognized in NP [SSS01]. By Lemma 4.3 this implies that the topological inference
problem can also be decided in NP.
Kratochvı́l [Kra98] suggested a different approach to obtaining an exponential upper bound.

He conjectured that in any smallest weak realization of a ðG;RÞ any edge which is crossed at least
once is crossed exactly once by some other edge. He showed that his conjecture implies

cwðmÞpmð2m�1 � 1Þ=2: The status of the conjecture remains open (a counterexample presented in
an earlier version of this article turned out to be faulty).
Is the string graph recognition problem decidable on surfaces of higher genus? Our proof

essentially relies on the inversion operation which will not be available to us (at least not in the
straightforward manner we used it) in surfaces other than the 2-sphere. In [SSS01] we show that
this problem can be solved using very recent results on trace monoids.
Related to the string graph problem is the problem of computing the crossing number of a

graph (the smallest number of intersections necessary to draw the graph in the plane). This
problem has long been known to be NP-complete. Martin Grohe [Gro01] recently showed it to be

solvable in time Oðf ðkÞn2Þ; where k is the number of intersections, and f ðkÞ ¼ Oð22pðkÞ Þ; for some
polynomial p; implying that it is fixed parameter tractable, since for fixed k the complexity is
quadratic. We obtain an interesting variant of the crossing number problem by asking for the
smallest number of pairs of edges that need to intersect to draw the graph in the plane (where each
such pair can intersect any number of times). Call this the crossing pairs number of a graph G
[PT00]. Our proof technique implies that if there is a drawing of G in which at most k pairs of

edges intersect, then there is a drawing of G with at most 2k22k intersections. We can then use



Grohe’s result to conclude that the crossing pairs number of a graph G is fixed parameter
tractable. With the techniques from [SSS01] we can also show that the problem lies in NP,
however, we do not know whether the problem is NP-hard.
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[PT00] J. Pach, G. Tóth, Which crossing number is it anyway?, J. Combin. Theory Series B 80 (2000) 225–246.
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[SSS01] M. Schaefer, E. Sedgwick, D. Štefankovič, Recognizing string graphs in NP, Technical Report TR01-011,

DePaul University, October 2001.

[Sch90] W. Schnyder, Embedding planar graphs on the grid, in: D. Johnson (Ed.), Proceedings of the 1st Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA ’90), San Francisco, CA, USA, SIAM,

Philadelphia, January 1990, pp. 138–148.

[Sin66] F.W. Sinden, Topology of thin film circuits, Bell System Tech. J. 45 (1966) 1639–1662.

[Tho98] M. Thorup, Map graphs in polynomial time, in: IEEE Symposium on Foundations of Computer Science,

Palo Alto, CA, 1998, pp. 396–405.


	Decidability of string graphs
	Introduction
	Preliminaries
	Bounding the Number of Intersections
	Topological Inference
	The theory of diagrams
	Concluding remarks
	Acknowledgements
	References


